shlf1314

科磊KLA 生物纳米压痕仪 iNano

 
品牌: KLA
单价: 面议
起订: 1 台
供货总量: 100 台
发货期限: 自买家付款之日起 30 天内发货
所在地: 默认地区
有效期至: 长期有效
最后更新: 2024-12-22 20:10
浏览次数: 102
 
公司基本资料信息
详细说明

iNano®纳米压痕仪使测量薄膜、涂层和小体积材料变得更简单。准确、灵活、用户友好的仪器可以进行多样的纳米材料力学测试,包括压痕、硬度、划痕和通用的纳米尺度测试。大的力和位移动态测量范围允许对从软聚合物到金属材料进行精确和可重复的测试。 模块选项可以适配各种应用:材料性能分布图、特定频率测试、划痕和磨损测试以及高温测试。iNano纳米压痕仪拥有一整套可扩展的测试选项,包括样品加热、连续刚度测量、NanoBlitz 3D/4D性能分布图和远程视频选项。

产品描述

iNano®纳米压痕仪使测量薄膜、涂层和小体积材料变得更简单。准确、灵活、用户友好的仪器可以进行多样的纳米材料力学测试,包括压痕、硬度、划痕和通用的纳米尺度测试。大的力和位移动态测量范围允许对从软聚合物到金属材料进行精确和可重复的测试。 模块选项可以适配各种应用:材料性能分布图、特定频率测试、划痕和磨损测试以及高温测试。iNano纳米压痕仪拥有一整套可扩展的测试选项,包括样品加热、连续刚度测量、NanoBlitz 3D/4D性能分布图和远程视频选项。

iNano采用InForce 50作动器进行纳米压痕和通用纳米机械测试。InForce 50的50mN力荷载和50μm位移范围使得该系统适合各种测试。InView软件是一个灵活的现代软件包,可以轻松进行纳米级测试。iNano是内置高速InQuest控制器和隔振门架的紧凑平台。该系统可以测试金属、陶瓷、复合材料、薄膜、涂层、聚合物、生物材料和凝胶等各种不同的材料和器件。


主要功能

● InForce 50作动器,用于电容位移测量和电磁力驱动,具有可互换的压头

● 独特的软件集成压头校准系统,可实现快速准确的压头校准

● InQuest高速电子控制器,具有100kHz数据采集速率和20μs时间常数

● XY移动系统带有易于安装的磁性样品架

● 具有数字变焦功能的集成显微镜,可获得精确的压痕定位

● ISO 14577和标准化测试方法

● InView软件包,包含RunTest、ReviewData、InFocus报告、InView University在线培训和InView移动应用程序

1.jpg


主要应用

● 硬度和模量测量(Oliver Pharr)● 材料力学性能分布图● ISO 14577硬度测试● 聚合物损耗因子,储存模量和损耗模量● 高温纳米压痕测试

硬度和模量测量(基于Oliver-Pharr模型)

在薄膜的工艺控制和制造过程中,表征其力学性能至关重要,其中包括汽车行业的涂层质量,以及半导体制造中的前道和后道工艺控制等。

iNano 纳米压痕仪可以测量各种材料的硬度和模量,从超软胶到硬涂层。高效地评估材料性能,保证了在生产线上进行有效的质量管控。

快速材料力学性能成像

对于包括复合材料在内的许多材料而言,不同区域之间的力学性能可能存在很大差异。iNano提供了X和Y轴100毫米和Z轴25毫米的样品台移动,允许在大样品面积上测试各种样品高度。使用NanoBlitz功能选项进行材料表面和断层力学性能成像,可以快速获得各种被测力学性能的彩色分布图。

ISO 14577 硬度测试

iNano纳米压痕仪包括一个预先编写的ISO 14577测试方法,用于测量符合ISO 14577标准的材料硬度。 该测试方法可以自动测量并输出杨氏模量、纳米压痕硬度、维氏硬度和归一化压痕功。

聚合物损耗因子

iNano纳米压痕仪能够测量 超软材料(包括粘弹性聚合物)的损耗因子。 储存模量、损耗模量和损耗因子是粘弹性聚合物的重要性能,因为作用到此类材料上的能量以弹性能的形式储存或以热量的形式耗散。上述指标即用于衡量材料中的能量储存和耗散情况。

高温纳米压痕测试

高温纳米压痕对于表征热应力作用下的材料性能至关重要,在定量研究热机械加工过程中的失效机理时更是如此。在不同温度下进行力学测试,不仅可以研究材料受热时的性能变化,还可以量化研究材料的塑性转变,这在纳米尺度上并非易事。


适用行业

● 大学、研究实验室和研究所● 半导体和封装行业● 聚合物和塑料● MEMS(微机电系统)/纳米级通用测试● 陶瓷和玻璃● 金属和合金● 制药● 涂料和油漆● 聚合物制造● 复合材料● 电池和储能

● 更多应用,请联系我们以满足您的要求

适用行业举例

半导体晶圆

半导体制造商通常致力于生产高质量的薄膜,而薄膜柔韧性较差将导致开裂和剥离。基底和外延层中未检测到的缺陷,也可能导致长期隐患和裂纹延展,造成器件失效。KLA纳米压痕仪能够测量超薄膜的弹性模量和硬度,及断裂韧性和开裂阈值,且不受基底的影响。将纳米力学性能与工艺参数建立关联,对于最大化半导体器件产能至关重要。

2.jpg

半导体封装

电子元件的性能和寿命可能取决于其封装的完整性。KLA纳米压痕仪让半导体封装厂商可以评估聚合物底部填充物的力学性能、焊料应变速率敏感因子和金属部件的强度。

3.jpg

聚合物与塑料

聚合物与塑料由于其时效变形特性,而被用于许多应用之中。无论聚合物是用作减振器、挤出材料还是医疗植入物,通常都通过动态力学分析(DMA)对其进行分析。在许多情况下,塑料部件的几何形状不适合采用传统的DMA仪器进行测试。无论样品的几何形状如何,KLA纳米压痕仪都能够局部定位塑料部件上的目标区域,并测量与频率相关的储能模量、损耗模量和损耗因子。iNano也可用于测量粘弹性蠕变和应力松弛特性。

4.jpg

陶瓷与玻璃

陶瓷和玻璃因其独特的光学、力学和电学特性,而成为许多应用中使用的重要材料。陶瓷与玻璃的传统力学测试(例如,四点弯曲测试)可能既耗时又昂贵。iNano可以快速表征少量材料的弹性模量和硬度。纳米压痕仪的划痕测试功能也非常适合定量评估光学涂层的耐划擦性。

5.jpg

金属与合金

金属与合金在许多行业中发挥着重要作用,例如汽车、航空航天、医疗和半导体。金属与合金的传统力学测试(例如,拉伸测试)可能既耗时又昂贵。iNano可以对少量材料进行快速表征。它还让用户可以表征弹性模量、硬度和抗蠕变性,以及这些特性随空间位置变化的梯度。

6.jpg

电池与储能

电池材料的力学性能与电池的稳定性、充电容量和续航时间密切相关。iNano 纳米压痕仪非常适合测试各种电池材料,从软质锂金属到硬质陶瓷基片。iNano提供面向多种环境的先进测量解决方案,其中包括干燥室和手套箱。

7.jpg

制药、食品和个人护理

药品、食品和个人护理产品的力学性能与客户满意度和体验密切相关。材料的弹性模量或刚度可能与质地和触感有关。药物糖衣的力学性能对于准时释放药性也至关重要。iNano 纳米压痕仪提供定量信息,补充定性客户反馈。

8.jpg

纳米级通用测试

iNano纳米压痕仪系统能够测量纳米级力学形变和其它纳米力学特性。iNano的多种测试能力包括纳米压痕、压缩、拉伸、蠕变、应力松弛和疲劳的测量。此外还支持标准和自定义试验方法。KLA纳米压痕仪团队的专职科学家还可提供咨询和实验设计。

9.jpg

选配件

连续刚度测量(CSM)

连续刚度测量用于量化测定动态材料特性,例如应变速率效应和频率相关特性。CSM技术在压痕过程中控制压头振荡,以测量样品性能随深度、荷载、时间或频率的变化。该选项默认进行恒应变速率测试,测量硬度和模量随深度或载荷的变化,这是学术界和工业界最常用的测试方法。CSM 还可用于其它高级测试选项,包括 ProbeDMA™选项以测量存储模量和损耗模量,以及AccuFilm™选项以获得不受衬底影响的薄膜性能。CSM 功能集成在 InQuest 控制器和 InView 软件中,使用极为简便,且确保数据质量。

10.jpg

300°C样品加热

300°C样品加热选项允许将样品放入加热室中进行均匀加热的同时使用InForce 50作动器进行测试。 该选项包括高精度温度控制系统、惰性气体保护系统以减少氧化、冷却系统以移除余热。ProbeDMA、AccuFilm、NanoBlitz和CSM功能均与样品加热选项兼容。

11.jpg

NanoBlitz 3D

NanoBlitz 3D利用InForce 50作动器和Berkovich压头来生成高模量 (> 3GPa)材料的纳米机械特性的3D图。 NanoBlitz 3D每个压痕时间小于1s,单次测试可包含多达100,000个压痕点(300×300阵列),获得每个压痕点在特定载荷下的杨氏模量(E)、硬度(H)和接触刚度(S)。大量的测试数据能够提高统计的准确性。统计直方图可以呈现样品中的多个物相或材料组分。NanoBlitz 3D方法包还包含可视化软件和数据处理功能。

12.jpg

NanoBlitz 4D

NanoBlitz 4D公司利用InForce 50作动器和Berkovich压头来生成低模量/硬度和高模量 (>3GPa)材料的纳米机械性能的4D图。 NanoBlitz 4D每个压痕仅需5-10秒,单次测试可包含多达10,000个压痕点(100×100阵列),获得每个压痕点的杨氏模量(E)、硬度(H)和接触刚度(S)等随深度的变化。NanoBlitz 4D 采用恒应变率方法。其软件包还包含可视化软件和数据处理功能。

13.jpg

AccuFilm™ 薄膜方法包

AccuFilm™薄膜方法包提供基于Hay-Crawford模型的InView测试方法,其采用连续刚度测量(CSM)获得不受衬底影响的薄膜材料性能。AccuFilm™能够修正薄膜力学性能测量中衬底的影响,其应用既包括“硬膜软基底”,也包括“软膜硬基底”的情况。

14.jpg

ProbeDMA™聚合物方法包

聚合物方法包可以测量聚合物的复模量随频率的变化。该方法包中包括平压头、粘弹性标样和评估材料粘弹性的测试方法。该技术可以有效表征纳米尺度聚合物和聚合物薄膜,填补传统的动态力学分析(DMA)测试仪在此领域的空白。

14-1.jpg

Biomaterials生物材料方法包

生物材料方法包基于连续刚度测量(CSM)技术,可以测量剪切模量低至1kPa的生物材料的复模量。该方法包中包括一个平压头和评估材料粘弹性的测试方法。该技术可以有效表征小尺寸生物材料,填补传统的流变仪在此领域的空白。

15.jpg

划痕和磨损测试方法包

划痕测试中,在压头上施加恒定或线性变大的载荷,并使其以设定速度在样品表面划过。划痕测试可以表征多样的材料体系,例如薄膜、脆性陶瓷和聚合物等。

16.jpg

DataBurst

对于配有InView软件和InQuest控制器的系统,DataBurst选项容许以大于1kHz的速率记录位移数据,用于测量阶跃载荷响应、位移突进(pop-in)和其它瞬时事件。配备了“用户方法开发”选项的iMicro系统,也可以修改方法以启用DataBurst。

17.jpg

InView的“用户方法开发”选项

InView提供一个功能极为强大且直观的实验脚本编辑平台,可用于设计新颖或复杂的实验。经验丰富的用户使用配备独有InView选项的iNano系统几乎可以设置和执行所有微力学测试。

18.jpg

主动减震系统以及一体式机柜

可选的高性能主动隔振系统在其内置隔振的基础上,为iNano纳米压痕仪提供了额外的隔振。 该系统易于安装,可在所有六个自由度上减少震动,且无需调试。一体式模组托架将所有模组集成在一处,方便使用。

19.jpg

True TestI-V电气测量

iNano微力学系统的True Test I-V选项采用InView软件控制,使用了精密电流表和电压源、一个可以通过压头的导通电路和导电压头。 该设计帮助用户对样品施加特定电压,测量压头处的电流,且同时操作InForce 50。

20.jpg

压痕仪压头和校准样品

InForce 50和Gemini作动器采用可互换的压头。 有多种尖锐的压头可供选择,例如玻式(Berkovich)、立方角(cube corner)和维氏(Vickers)压头,还可提供平压头、球形压头和其它几何形状的压头。整个产品系列也提供标准参考材料和校准标准。

21.jpg

远程视频选项

除了现有的显微镜物镜之外,远程视频选项还在iNano腔室内提供了两个视角。 第一个安装的支架专门关注测试过程中的压痕仪压头,此设置非常适合于柔性和软材料。 第二个支架安装在机架上,用于在测试设置期间观察样品和显微镜物镜。 标准显微镜物镜和USB摄像头之间的视图切换由软件控制。

22.jpg


相关产品

反对 0举报 0 收藏 0 评论 0
更多>本企业其它产品
进口动态疲劳试验机 K-T G200/InSEM/iMicro/iNano纳米压痕仪 高精度微纳米拉伸仪 科磊KLA 接触式轮廓仪/台阶仪 HRP®-260 科磊KLA 探针式轮廓仪/台阶仪 P-7 科磊KLA 探针式轮廓仪/台阶仪 D-500 KLA 膜厚仪/测厚仪 F20/F32/F40/F50/F60 KLA 白光干涉轮廓仪 Profilm 3D
网站shlf1314  |  仪器公司  |  网站地图  |  网站留言  |  产品大全  |  科普知识